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A recently devised method of establishing arbitrarily close upper and lower 
bounds on the chemical potential for certain kinds of thermodynamic systems is 
applied to a one-dimensional lattice system whose sites cannot accept particles 
as nearest neighbors, i.e., whose particles repel one another when they are 
nearest neighbors. The exact chemical potential is found to always lie within the 
bounds, and the convergence of the bounds is examined for lattices of increasing 
size. The system, of course, lacks a phase transition, but its study, which is both 
brief and simple, is useful for the purposes of illustration and completeness. 
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1. INTRODUCTION 

In a recent paper, Reiss and Merry (1) developed a method for establishing 
rigorous upper and lower bounds on the chemical potential of a hard 
sphere fluid, The bounds were applicable at any density, and could be 
made arbitrarily close at the expense of evaluating petite ensemble partition 
functions for systems containing increasing numbers of particles. Although 
these systems contain finite numbers of particles, the partition functions 
can only be evaluated numerically, e.g., by Monte Carlo methods. 

A cost effective way of exploring the convergence of bounds of this 
type would involve deriving them for a system where petite ensemble 
partition functions for systems consisting of finite numbers of particles 
could be evaluated analytically. These partition functions, however, must 
correspond to systems with free or cylindrical boundary conditions, 2 not 
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cyclic conditions. (2) Candidate systems are the two-dimensional ferromag- 
net (3) (Ising model) whose partition functions are available for cylindrical 
conditions and the two-dimensional dimer model (4) where partition func- 
tions are available for free boundary conditions. The Ising model possesses 
a phase transition. 

The use of these models still involves some complexity, although they 
should certainly be enlisted in the near future, and it is worthwhile, for the 
sake of completeness, to first examine an even simpler model involving a 
system which is only one-dimensional. Such a system cannot, of course, 
undergo a phase transition, and the convergence of bounds will be unrealis- 
tically rapid (since slow convergence can be shown (1) to be due to surface 
effects, and the one-dimensional system will only have ends whose extent, 
unlike that of a surface, is independent of system size), but, in view of the 
inherent simplicity, and the associated brevity of exposition, its study is still 
worthwhile. In this paper we describe such a system, and examine the 
convergence of the bounds on its chemical potential. 

2. THE SYSTEM AND ITS BOUNDS 

We choose a one-dimensional system occupying a one-dimensional 
lattice containing N sites. The particles in this system can occupy the 
lattice, but two particles can never occupy adjacent (nearest neighbor) sites. 
Thus there is an effective "repulsion" between particles which confers on 
them some of the characteristics of the hard spheres treated in Ref. 1. The 
lower bound in Ref. 1 is specified by equation (68) of that paper, while the 
upper bound is determined by equation (76). Because of the repulsive 
interaction between the particles on our lattice it is possible to show, by 
arguments exactly parallel to those leading to equations (68) and (76) of 
Ref. 1, that for the lattice systems the lower and upper bounds are, 
respectively, determined by 3 

~Js=1jMqj( N ) 
f ~ N  --- (1) 

1 4- ~']iN l~kJ*qj.(U) 

2iN= lfik~,qj( N ) 
f=(N + 2) = (2) 

1 + 

3 These equations would both be exact for N o  ~ since they are then simply expressions for 
the average occupancy according to the conventional grand ensemble. However, for N finite, 
they can be shown to be inexact by the omission of interaction terms between the "system" 
and the constant chemical potential "surroundings" of the grand ensemble. These interaction 
terms depend upon whether the system is multidimensional or unidimensional. In Ref. (1) it 
is shown that these interaction terms render h** in Eq. (1), a lower bound, and h** in Eq. 
(2), an upper bound. 
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where 

~. = e m/kr (3) 

is a lower bound, thermodynamic activity related, as shown, to the lower 
bound chemical potential, #.. Temperature is denoted by T, and k is the 
Boltzmann constant. The upper bound activity is 

)t.. = e ~../kr (4) 

where/~** is the upper bound chemical potential. In Eqs. (1) and (2) qj(N) 
is the petite ensemble partition function for j particles on a lattice of N 
sites; JN is the maximum number of particles allowed on a lattice of N sites, 
N / 2  when N is even, and (N + 1)/2 when N is odd. Finally foo has the 
following meaning: 

Consider a system with N---)0% i.e., a system in the thermodynamic 
limit. Then f~r is defined as the ratio of the number of particles to lattice 
sites in this system. Given f~,  the chemical potential in this system is 
determined. In fact it is the limit to which #. in Eq. (1) converges as N ~  
in Eq. (1). This follows from the fact that the right-hand side of Eq. (1) is 
the standard grand ensemble expression for the number of particles on the 
lattice as N---) oe, provided that #. is the true chemical potential for N---) oo. 
When N ~ o o ,  fo~N is the number of particles in the system, so the 
exactness in the thermodynamic limit of the grand ensemble expression 
guarantees that/~, will converge on/z, the true chemical potential. Thus, 
looN is the number of particles in the system, in the thermodynamic limit, 
when the true thermodynamic potential is/~. The/z. determined by Eq. (1) 
(the lower bound) bears the following relation to #(f~):  

Similarly, 

 (Lo) (5) 

If the effecth, e grand partition function is defined as 

jN 

Zn()t) = E )tJqj(N) 
j=0 

where qj(O) = 1, then Eq. (1) may be expressed as 

O In Z, ()t.) 
f ~ N  = ~ ln2t. 

and Eq. (2) as 

0 In Z, (~..,) 
foo(N + 2) - 0 In~(.. 

(6) 

(7) 

(8) 

(9) 
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If we can arrive at an analytical expression for Z.(A), then Eqs. (8) and (9) 
can be solved for X. and )t**, respectively, thereby yielding the lower and 
upper bounds. The true activity, )t, in the thermodynamic limit can be 
obtained from 

f ~ =  N--->colim ( N10lnZ.(X) ) O l n ) ~  (10) 

Thus we can compare )~., M., and )~ as functions of the particle fraction 
(effectively the density), f~ .  We follow such a program in the following 
sections. 

3. EVALUATION OF Z~(~) 

The most convenient way to arrive at an analytical expression for 
Z,(~) is through the transfer matrix technique. O) Z~(~) consists of two 
"components" consisting of terms in which the Nth site is unoccupied and 
occupied, respectively. These two components are denoted by Z~  and Z~, 
respectively, and are viewed as the two components of a vector, Zs,  The 
transfer matrix, 

maps Z~_ l into Z., 

Z. =M. ZN_ 1 (12) 

Repeated application of this relation gives 

Z n = M N - I . z 1  

where Z 1 is clearly 

Denoting the unit vector as 

we find 

(13) 

= 1 "Zn(~ ) -- 1" MN-' �9 Zi(X) 

If A is the matrix which diagonalizes M such that 

D = A - 1 M A  

(16) 

(17) 
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where 

where 

o=(0 
OL = 1 -'1- ( I  "l" ~)1/2 

are the eigenvalues of M, we have 

Z,(X) = I . A .  (0  u - '  

It is easily shown that 

and 

(18) 

(19) 

~ N-,)" A �9 z~(x) (20) 

1 
/8 - 1 ) (21) 

A ,_ •   1_o - : )   22, 
Performing the operations implicit in Eq. (20) we arrive at the result 

We note that 

~ N ( / 8  __ 1 - - ~ )  + /SN(1 -- ~ + X )  
(23) z . ( x )  = /8 _ 

Oc~ 1 
ox 2(�88 + x)  '/2 

0/8 - 1  

ax 2(�88 + x) '/2 

(24) 

Equation (23) may be substituted into Eqs. (8) and (9), and with the help of 
Eq. (24), provides equations which determine )t. and M.. 

For the case N ~ ce, both of these equations yield 

f _ _  X (25) 
�89 + 2)t + (�88 + )t) 1/2 

from which )~ and the t r u e  value of/~, 

I~ = k T l n  X (26) 

can be determined as functions of f~ .  
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4. DISCUSSION 

To compare Xwith X. and X** as functions of foo, we first determine X 
as a function of fo~, using Eq. (25). The easiest way to arrive at this curve is 
to simply calculate f~  as a function of X, and plot the result in the form of 
X as a function of foo- This curve is presented in Fig. 1 as the curve marked 
X. The equations derived from Eqs. (8) and (9), through substitution of Eqs. 
(23) and (24), can then be used to calculate f~  as functions of X, and X** 
for particular values of N. These relations may be expressed as 

f~  = F(X., N)  (27) 

o r  

f~  = F(X**, N)  (28) 

The results can again be plotted in the forms of X.(f~, N) and X.,(f~, N) 
as functions of f~ .  Such plots, denoted by the labels h.(N) and X**(N), are 
plotted in Figs. 1, 2, and 3, for values of N equal to 2, 10, and 40, 
respectively. As expected, all the X. curves lie below, and all the X.. lie 
above X. The bounds converge rapidly with increasing N, but converge with 
difficulty at values of f~  in the neighborhood of 0.5, i.e., in the neighbor- 
hood of close packing. Even so, the convergence is anomolously rapid with 
increasing N, since the one-dimensional system has no "surface," only 
ends. 

'~176 1 +~ 
E~ "~ 60 I 
-J 40 

.+t 
o J ~ . = - -  
0.1 

X** 

l J  
~ O" L 

0 , 2  3 0 . 4  0 . 5  

F - I N F I N I T Y  (N=2) 

Fig. 1. Plots of X,.,  h, and ~.  as functions of f ~  for N = 2. In this case the system can 
contain only a single particle, and the situation is obviously artificial. Of course the bounds  are 
far apart. 
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Fig. 2. 
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Plots of M. ,  A, and L as functions of foo for N ~ 10. Some convergence of  die bouads 
may be noted. 
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Fig. 3. P b t s  of )t.., h, and 2.. as functions ot f~o for N = 40. Convergence is already quite 
good, blot still difficult to aelJeve nearfo a = 03 corresponding to close packing. 
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